
Survey of Unit-Testing
Frameworks

by John Szakmeister and Tim Woods

1Sunday, July 26, 2009

Our Background

• Using Python for 7 years

• Unit-testing fanatics for 5 years

2Sunday, July 26, 2009

Agenda

• Why unit test?

• Talk about 3 frameworks:

‣ unittest

‣ nose

‣ py.test

3Sunday, July 26, 2009

Why bother?

• Confidence!

• Automation

• To make failures more obvious

• To prevent regressions

• Aids debugging

4Sunday, July 26, 2009

Commonalities

• All the frameworks:

‣ Follow the xUnit mentality

‣ Verify via asserts

5Sunday, July 26, 2009

unittest

• In the standard library

• The de-facto standard unit test framework

6Sunday, July 26, 2009

Writing some tests...

• Need to subclass TestCase

import unittest

class TestFoo(unittest.TestCase):
 …

7Sunday, July 26, 2009

Write some tests...

• The simple way: test methods start with ‘test’

• Use assertions validate your results

8Sunday, July 26, 2009

Examples...

def testIsInt(self):
 self.assertTrue(foo.isInt(0))
 self.assertFalse(foo.isInt("not an int"))

def testMakeList(self):
 self.assertEquals([1,2,3],
 foo.makeList(1, 2, 3))

def testDivide(self):
 self.assertEquals(0, foo.divide(0, 1))
 self.assertRaises(
 ZeroDivisionError, foo.divide, 1, 0)

9Sunday, July 26, 2009

Test Fixtures

• Useful if test cases need more “infrastructure”

• setUp() is called before each test method

• tearDown() is called after each test method

10Sunday, July 26, 2009

Example...

 def setUp(self):
 # ... Any *common* set up required for your
 # test cases can go here
 self.db = create_db_connection()

 def tearDown(self):
 # Clean up the fixture here
 self.db.close()

11Sunday, July 26, 2009

Running the Tests...

• Executing all tests within the file is easy

• Add this to the file:

if __name__ == '__main__':
 unittest.main()

• Collects all test cases, and executes them
using the default console test runner

12Sunday, July 26, 2009

Example output

• On the command line, run:

:: PYTHONPATH=. python tests_unittest/test_foo.py
....

Ran 4 tests in 0.000s

OK

13Sunday, July 26, 2009

Collecting All Tests...

• Need a suite to help collect the test cases

• In each file, do the following:

def suite():
 testSuite = unittest.TestSuite()
 loader = unittest.TestLoader()

 for testCase in [TestFoo, TestFooBar]:
 testSuite.addTest(
 loader.loadTestsFromTestCase(testCase))
 return testSuite

14Sunday, July 26, 2009

(cont)

• Pull all the suites together in the __init__.py:

import unittest
import test_foo

def collectAll():
 allSuite = unittest.TestSuite(test_foo.suite())

 # If you have others, you can add them by
 # doing:
 # allSuite.addTest(test_bar.suite())

 return allSuite

15Sunday, July 26, 2009

Finally, run all the tests

• Need to launch unittest.main(), but this
time, tell it how to find the full test suite:

#!/usr/bin/env python
import unittest
import tests_unittest

unittest.main(
 defaultTest='tests_unittest.collectAll')

16Sunday, July 26, 2009

setuptools

• You can launch your tests via setuptools:

from setuptools import setup

setup(...,
 test_suite = 'tests_unittest.collectAll'
)

17Sunday, July 26, 2009

Pros

• It’s in the standard library

• Writing the actual tests is easy

18Sunday, July 26, 2009

Cons

• Tedious to collect test suites, especially for a
large code base

‣ Michael Foord is working on this
(check out the discover package)

• Not as easily extensible as other frameworks

‣ Others have done it though. See the
testtools project in Launchpad.

19Sunday, July 26, 2009

Future Improvements

• unittest is vastly improved in Python 2.7

‣ Test discovery

‣ Skipping

‣ Expected Failures

‣ assertRaises using ‘with’ statement

‣ New assert methods, and much more

20Sunday, July 26, 2009

nose

• Written by Jason Pellerin

21Sunday, July 26, 2009

Install nose

• Available from http://
somethingaboutorange.com/mrl/projects/
nose/

• Use easy_install:
 easy_install nose

22Sunday, July 26, 2009

http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/

Just write tests

• Finds test files, functions, classes, methods

‣ test or Test on a word boundary

‣ Customize with regular expression

• No need to write suites

• Use package structure to organize tests

‣ Add __init__.py to directory

23Sunday, July 26, 2009

Write a test

• Create a file, test_foo.py:
from nose.tools import *

import foo

def test_isInt():
 assert_true(foo.isInt(0))

24Sunday, July 26, 2009

Use assertions

• Provided in ‘nose.tools’

• Same asserts as unittest, in PEP 8 style

• Also provides:

‣ ok_ => assert

‣ eq_ => assert_equals

25Sunday, July 26, 2009

Use assertions

def test_isInt():
 assert_true(foo.isInt(0))
 assert_false(foo.isInt("not an int"))

def test_makeList():
 assert_equals([1,2,3], foo.makeList(1, 2, 3))

def test_divide():
 eq_(0, foo.divide(0, 1))

26Sunday, July 26, 2009

Check exceptions

• Verify that test function raises exception

• Use raises decorator:
@raises(ZeroDivisionError)
def test_divide_by_zero():
 foo.divide(1, 0)

27Sunday, July 26, 2009

Test fixtures

• Use with_setup decorator

• Can be used for simple setup

• More complex cases should probably use a
test class

• Fixtures per package, module, class

28Sunday, July 26, 2009

Test fixtures
_db = None

def setup_func():
 global _db
 _db = create_db_connection()

def teardown_func():
 global _db
 _db.close()

@with_setup(setup_func, teardown_func)
def test_with_fixture():
 ok_(isinstance(_db, DummyConnection))

29Sunday, July 26, 2009

Test classes

• Define class that matches test regexp

• Define test methods in the class

• Optionally define setup and teardown

30Sunday, July 26, 2009

Test classes
class TestFoo():

 def setup(self):
 # Fixture setup
 self.db = create_db_connection()

 def teardown(self):
 # Fixture teardown
 self.db.close()

 def test_isInt(self):
 ok_(foo.isInt(0))

 def test_dbConn(self):
 ok_(isinstance(self.db, DummyConnection))

31Sunday, July 26, 2009

Generative tests

• Each yield results in a test case
def test_generator():
 for i in xrange(0, 20, 2):
 yield check_even, i

def check_even(even_number):
 assert_true(foo.isEven(even_number))
 assert_false(foo.isEven(even_number + 1))

32Sunday, July 26, 2009

Attributes

• Add attribute tag to tests
from nose.plugins.attrib import attr

@attr('nothing')
def test_zero_equals_zero():
 assert 0 == 0

• Can set a specific value
@attr(speed=‘slow’)

33Sunday, July 26, 2009

Attributes

• Select attributes at runtime (-a/--attr)

‣ nothing

‣ speed=slow

• Python expression (-A/--eval-attr)

‣ “not nothing”

‣ “(speed==‘slow’ and not nothing)”

34Sunday, July 26, 2009

Skip tests

• Raise exception to report test skipped
from nose.plugins.skip import SkipTest

def test_skipme():
 raise SkipTest

35Sunday, July 26, 2009

Runs unittest tests

• Loads tests from unittest.TestCase subclasses

• Easily used as a front-end for legacy tests

36Sunday, July 26, 2009

Running tests

• Type nosetests at the top level

• Run a subset of tests

‣ cd package; nosetests

‣ nosetests package/tests/module.py

‣ nosetests package.tests.module:name

37Sunday, July 26, 2009

Other features

• setuptools integration

• Plugin system

‣ Debug, code coverage and profiling

‣ Doctest runner

‣ XUnit XML output

38Sunday, July 26, 2009

Pros

• No tedious mucking about with suites

• Can be used with legacy unittest tests

• Generative tests

• Plugins

39Sunday, July 26, 2009

Cons

• Not in standard library

• No official release supporting Python 3.x

‣ py3k branch exists

40Sunday, July 26, 2009

py.test

• Written by Holger Krekel

41Sunday, July 26, 2009

Install py.test

• Actually part of pylib

• Download from http://pytest.org/

• Use easy_install:
 easy_install py

42Sunday, July 26, 2009

http://pytest.org
http://pytest.org

Easy to get started..

• Just create a test file

‣ Make sure it starts with ‘test_’

• Start adding test methods, or test classes:

import foo
import py.test

def test_isInt():
 pass

43Sunday, July 26, 2009

Uses ‘assert’

def test_isInt():
 assert True == foo.isInt(0)
 assert False == foo.isInt("not an int")

def test_makeList():
 assert [1,2,3] == foo.makeList(1, 2, 3)

44Sunday, July 26, 2009

Checking exceptions...

• Use py.test.raises()

def test_divide():
 assert 0 == foo.divide(0, 1)

 # Dividing 1 by 0 should raise
 # ZeroDivisionError
 py.test.raises(
 ZeroDivisionError, foo.divide, 1, 0)

45Sunday, July 26, 2009

“Test” classes

Just start the class with “Test”:

class TestFoo():
 def test_isInt(self):
 assert True == foo.isInt(0)
 assert False == foo.isInt("not an int")

46Sunday, July 26, 2009

Test Fixtures

• With test classes, use:

def setup_method(self, method):
 # Fixture setup
 self.db = create_db_connection()

def teardown_method(self, method):
 # Fixture teardown
 self.db.close()

47Sunday, July 26, 2009

Funcargs

• Helps you to create arguments instead

def pytest_funcarg__db(request):
 db = create_db_connection()
 request.addfinalizer(lambda: db.close())
 return db

def test_db(db):
 # ... do something …
 assert isinstance(db, DummyConnection)

• Funcargs are the preferred way in py.test

48Sunday, July 26, 2009

Funcargs

• Helps you to create arguments instead

def pytest_funcarg__db(request):
 db = create_db_connection()
 request.addfinalizer(lambda: db.close())
 return db

def test_db(db):
 # ... do something …
 assert isinstance(db, DummyConnection)

• Funcargs are the preferred way in py.test

49Sunday, July 26, 2009

Generative tests...

• Similar to nose…

def test_generative():
 for i in xrange(0,20,2):
 yield check_even, i

def check_even(even_number):
 assert True == foo.isEven(even_number)
 assert False == foo.isEven(even_number+1)

• This has been deprecated though

50Sunday, July 26, 2009

Generative tests...

• New style test generators

‣ Still experimental

‣ Encompasses several ways of doing:

• Parameterized tests

• Scenario tests

51Sunday, July 26, 2009

“Marking” tests...

• Can mark tests as “expected failure”

@py.test.mark.xfail
def test_xfail():
 assert 0 == 1

• Or with keywords

A test marked with keyword "nothing"
@py.test.mark(nothing=True)
def test_zero_equals_zero():
 assert 0 == 0

52Sunday, July 26, 2009

“Marking” tests...

• Some keywords are added automatically

‣ Filename

‣ Class names

‣ Function names

53Sunday, July 26, 2009

Skipping Tests

• Skip if an import fails
 bogus = py.test.importorskip("bogus")

‣ Skip all when done at module level

‣ Skips an individual test when done inside
a test function

• Skip for some other reason
 py.test.skip("A short message")

54Sunday, July 26, 2009

Disabling a test class

• Great for disabling platform-specific tests:

class TestWin32Only:
 disabled = sys.platform != 'win32'
 # Test cases follow…

• Also good for disabling tests that require a
specific software/hardware setup

‣ Need a decent way to test for it

‣ Keywords are useful for this too

55Sunday, July 26, 2009

Executing Tests

• Use the py.test command:

 py.test [/path/to/file/or/dir] […]

• Automatically collects tests

• Begins executing tests immediately

56Sunday, July 26, 2009

Executing Tests

• Tests with a specific keyword:

 py.test -k keyword

• Tests that don’t have a specific keyword:

 py.test -k “-keyword”

57Sunday, July 26, 2009

Distributed Testing

• Two modes

‣ Local

‣ Remote

58Sunday, July 26, 2009

Locally

• Take advantage of multiprocessors machine

• Significant speedups if tests are IO bound

• To run tests in ‘<num>’ processes, use:
 py.test -n <num>

59Sunday, July 26, 2009

Remotely

• Two strategies

‣ Load balancing - every test one run once
 py.test --dist=load
 py.test -d

‣ Multiplatform - run every test on each
platform
 py.test --dist=each

60Sunday, July 26, 2009

Remote Mechanisms

• Use ssh
 py.test -d --tx ssh=user@host//chdir=/tmp \
 --rsyncdir pkg

• Use a gateway
 py.test -d --tx socket=ip:port//chdir=/tmp \
 --rsyncdir pkg

• Gateway launched via a small script

‣ Does not require installing pylib

61Sunday, July 26, 2009

conftest.py

• Captures command-line args in a config file

• Great for storing remote test configuration

pytest_option_tx = ["ssh=localhost"]
pytest_option_dist="load"
Paths are relative to conftest.py
rsyncdirs = [".", "../foo.py"]

• Can also configure plugin options

62Sunday, July 26, 2009

Other features

• Can drop into PDB on error

• Has a plugin system

‣ Execute unittest-style TestCases

‣ Coverage reporting (via figleaf)

‣ Pylint integration

‣ And many more

63Sunday, July 26, 2009

Pros

• Don’t need to collect the tests

• Generative tests

• Marking tests

• Distributed testing

• Excels with large test suites

• More to py.test than this small example

64Sunday, July 26, 2009

Cons

• Default output is a bit sloppy

• Funcargs and generative == breakage!

• No Python 3 support yet

• Distributed tests can hang on an internal failure

65Sunday, July 26, 2009

We have source!

http://www.szakmeister.net/misc/unit-testing.zip

66Sunday, July 26, 2009

http://www.szakmeister.net/misc/unit-testing.zip
http://www.szakmeister.net/misc/unit-testing.zip

Questions?

67Sunday, July 26, 2009

