Survey of Unit-Testing
Frameworks

by John Szakmeister and Tim Woods
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Our Background

® Using Python for 7 years

® Unit-testing fanatics for 5 years



Agenda

® Why unit test!

® Talk about 3 frameworks:
» unittest
P nose

P pYy.test
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Why bother?

® Confidence!

® Automation

® To make failures more obvious
® Jo prevent regressions

® Aids debugging
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Commonalities

® All the frameworks:
» Follow the xUnit mentality

» Verify via asserts
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unittest

® |n the standard library

® The de-facto standard unit test framework
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Writing some tests...

® Need to subclass TestCase

import unittest

class TestFoo(unittest.TestCase):
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Write some tests...

® The simple way: test methods start with ‘test’

® Use assertions validate your results
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Examples...

def testIsInt(self):
self.assertTrue(foo.1sInt(0))
self.assertFalse(foo.1sInt("not an int"))

def testMakelList(self):
self.assertEquals([1,2,3],
foo.makeList(1l, 2, 3))

def testDivide(self):
self.assertkEquals(0®, foo.divide(0, 1))
self.assertRaises(
/eroDivisionError, foo.divide, 1, 0)
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Test Fixtures

® Useful if test cases need more “infrastructure”
® setUp() is called before each test method

® tearDown() is called after each test method
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Example...

def setUp(self):
# ... Any *common* set up required for your
# test cases can go here
self.db = create_db_connection()

def tearDown(self):
# Clean up the fixture here
self.db.close()
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Running the lests...

® Executing all tests within the file is easy

® Add this to the file:

1f __name__ == '__main__":
unittest.main()

® (Collects all test cases, and executes them
using the default console test runner
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Example output

® On the command line, run:

:: PYTHONPATH=. python tests_unittest/test_foo.py

Ran 4 tests 1n 0.000s

OK
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Collecting All Tests...

® Need a suite to help collect the test cases

® |n each file, do the following:

def suite():
testSuite = unittest.TestSuite()
loader = unittest.TestlLoader()

for testCase 1in [TestFoo, TestFooBar]:
testSuite.addTest(
loader.loadTestsFromTestCase(testCase))
return testSuite
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(cont)

® Pull all the suites together in the __init__ .py:

import unittest
import test_foo

def collectAll():
allSuite = unittest.TestSuite(test_foo.suite())

# If you have others, you can add them by
# doing:
# allSuite.addTest(test_bar.suite())

return allSuite
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Finally, run all the tests

® Need to launch unittest.main(), but this
time, tell it how to find the full test suite:

#!/usr/bin/env python
import unittest
import tests_unittest

unittest.main(
defaultTest="tests_unittest.collectAll’)
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setuptools

® You can launch your tests via setuptools:

from setuptools 1import setup

setup(...,
test_suite = "tests_unittest.collectAll’

)
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Pros

® |t’s in the standard library

® Writing the actual tests is easy
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Cons

® Tedious to collect test suites, especially for a
large code base

» Michael Foord is working on this
(check out the discover package)

® Not as easily extensible as other frameworks

» Others have done it though. See the
testtools project in Launchpad.
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Future Improvements

® unittest is vastly improved in Python 2.7
» Test discovery
» Skipping
» Expected Failures
» assertRaises using ‘with’ statement

» New assert methods, and much more
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NOSC

® Written by Jason Pellerin
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Install nose

® Available from http://

somethingaboutorange.com/mrl/projects/
nose/

® Use easy install:

easy_install nose
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Just write tests

® Finds test files, functions, classes, methods
» test or Test on a word boundary
» Customize with regular expression

® No need to write suites

® Use package structure to organize tests

» Add __ init___.py to directory
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Write a test

® Create afile, test_foo.py:

from nose.tools import *
import foo

def test_isInt():
assert_true(foo.1sInt(0))
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Use assertions

® Provided in ‘nose.tools’
® Same asserts as unittest, in PEP 8 style
® Also provides:

» ok => assert

» eq_ => assert_equals
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Use assertions

def test_isInt():
assert_true(foo.isInt(0))
assert_false(foo.1sInt("not an i1nt"))

def test_makelList():
assert_equals([1,2,3], foo.makelList(l, 2, 3))

def test_divide():
eq_(0, foo.divide(@, 1))
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Check exceptions

® Verify that test function raises exception

® Use raises decorator:

@raises(ZeroDivisionError)
def test_divide_by_zero():
foo.divide(l, 0)
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Test fixtures

Use with_setup decorator
Can be used for simple setup

More complex cases should probably use a
test class

Fixtures per package, module, class
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Test fixtures

_db = None

def setup_func():
global _db

_db = create_db_connection()

def teardown_func():
global _db
_db.close()

@with_setup(setup_func, teardown_func)
def test_with_fixture():
ok_(1sinstance(_db, DummyConnection))
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Test classes

® Define class that matches test regexp
® Define test methods in the class

® Optionally define setup and teardown
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Test classes

class TestFoo():
def setup(self):
# Fixture setup
self.db = create_db_connection()

def teardown(self):
# Fixture teardown
self.db.close()

def test_isInt(self):
ok_(fo00.1sInt(0))

def test_dbConn(self):
ok_(1sinstance(self.db, DummyConnection))

Sunday, July 26, 2009

31



Sunday, July 26, 2009

(Generative tests

® FEach yield results in a test case

def test_generator():
for 1 1n xrange(0, 20, 2):
yield check_even, 1

def check_even(even_number):
assert_true(foo.1skEven(even_number))
assert_false(foo.1sEven(even_number + 1))
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Attributes

® Add attribute tag to tests

from nose.plugins.attrib import attr

@attr('nothing')
def test_zero_equals_zero():
assert 0 ==

® Can set a specific value

@attr(speed=°‘slow’)

33



Sunday, July 26, 2009

Attributes

® Select attributes at runtime (-a/--attr)
» nothing
» speed=slow

® Python expression (-A/--eval-attr)

» “not nothing”

» “(speed=='slow’ and not nothing)”
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Skip tests

® Raise exception to report test skipped

from nose.plugins.skip import SkipTest

def test_skipme():
raise SkipTest
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Runs unittest tests

® | oads tests from unittest. TestCase subclasses

® Easily used as a front-end for legacy tests
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Running tests

® Jype nosetests at the top level

® Run a subset of tests

P cd package; nosetests
P nosetests package/tests/module.py

P nosetests package.tests.module:name
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Other features

® setuptools integration
® Plugin system
» Debug, code coverage and profiling

» Doctest runner

» XUnit XML output
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Pros

No tedious mucking about with suites
Can be used with legacy unittest tests
Generative tests

Plugins
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Cons

® Not in standard library
® No official release supporting Python 3.x

» py3k branch exists
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py.test

® Written by Holger Krekel
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Install py.test

® Actually part of pylib

® Download from http://pytest.org/

® Use easy install:
easy_1install py
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Easy to get started..

® Just create a test file

’

» Make sure it starts with ‘test

® Start adding test methods, or test classes:

import foo
import py.test

def test_isInt():
pASS
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Uses ‘assert’

def test_isInt():
assert True == foo.1sInt(0)
assert False == foo.1sInt("not an 1nt")

def test_makelList():
assert [1,2,3] == foo.makelList(1l, 2, 3)
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Checking exceptions...

® Use py.test.raises()

def test_divide():
assert @ == foo.divide(0, 1)

# Dividing 1 by 0 should raise
# /ZeroDivisionError
py.test.raises(
/eroDivisionkError, foo.divide, 1, 0)
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“Test’’ classes

Just start the class with “Test”:

class TestFoo():
def test_isInt(self):
assert True == foo.1sInt(0)
assert False == foo.i1sInt("not an int")

46



Sunday, July 26, 2009

Test Fixtures

® VWith test classes, use:

def setup_method(self, method):
# Fixture setup
self.db = create_db_connection()

def teardown_method(self, method):
# Fixture teardown
self.db.close()
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Funcargs

® Helps you to create arguments instead

def pytest_funcarg__db(request):
db = create_db_connection()
request.addfinalizer(lambda: db.close())
return db

def test_db(db):
# ... do something ..
assert 1sinstance(db, DummyConnection)

® Funcargs are the preferred way in py.test
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Funcargs

® Helps you to create arguments instead

def pytest_funcarg_request):
db = create_db_connection()
request.addfinalizer(lambda: db.close())
return db

def test db‘

. do something .
assert 151nstance(db DummyConnection)

® Funcargs are the preferred way in py.test
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(Generative tests...

® Similar to nose...

def test_generative():
for 1 1n xrange(0,20,2):
yield check_even, 1

def check_even(even_number):

assert True == foo.1sEven(even_number)
assert False == foo.1isEven(even_number+1l)

® This has been deprecated though
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(Generative tests...

® New style test generators
» Still experimental
» Encompasses several ways of doing:
* Parameterized tests

e Scenario tests
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“Marking” tests...

® Can mark tests as “expected failure”

@py.test.mark.xfail
def test_xfail():
assert 0 == 1

® Or with keywords

# A test marked with keyword "nothing"
@py.test.mark(nothing=True)
def test_zero_equals_zero():

assert @ ==
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“Marking” tests...

® Some keywords are added automatically
» Filename
» Class names

» Function names
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Skipping Tests

® Skip if an import fails
bogus = py.test.importorskip("bogus™)

» Skip all when done at module level

» Skips an individual test when done inside
a test function

® Skip for some other reason
py.test.skip("A short message")
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Disabling a test class

® Great for disabling platform-specific tests:

class TestWin320nly:
disabled = sys.platform != "win32'
# Test cases follow..

® Also good for disabling tests that require a
specific software/hardware setup

» Need a decent way to test for it

» Keywords are useful for this too
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Executing lTests

® Use the py.test command:

py.test [/path/to/file/or/dir] [..]

® Automatically collects tests

® Begins executing tests immediately
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Executing lTests

® Tests with a specific keyword:

py.test -k keyword

® Tests that don’t have a specific keyword:

py.test -k “-keyword”
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Distributed lesting

® [wo modes
» Local

» Remote
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Locally

® Take advantage of multiprocessors machine
® Significant speedups if tests are |O bound

® TJo run tests in ‘<num>’ processes, use:

py.test -n <num>
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Remotely

® [wo strategies

» Load balancing - every test one run once
py.test --dist=load

py.test -d

» Multiplatform - run every test on each
platform
py.test --dist=each
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Remote Mechanisms

® Use ssh

py.test -d --tx ssh=user@host//chdir=/tmp \
--rsyncdir pkg

® Use a gateway

py.test -d --tx socket=ip:port//chdir=/tmp \
--rsyncdir pkg

® Gateway launched via a small script

» Does not require installing pylib
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conftest.py

® Captures command-line args in a config file

® Great for storing remote test configuration

pytest_option_tx = ["ssh=localhost"]
pytest_option_dist="1oad"

# Paths are relative to conftest.py
rsyncdirs = [".", "../foo.py"]

® Can also configure plugin options
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Other features

® Can drop into PDB on error

® Has a plugin system
» Execute unittest-style TestCases
» Coverage reporting (via figleaf)
» Pylint integration

» And many more
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Pros

Don’t need to collect the tests
Generative tests

Marking tests

Distributed testing

Excels with large test suites

More to py.test than this small example
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Cons

® Default output is a bit sloppy
® Funcargs and generative == breakage!
® No Python 3 support yet

® Distributed tests can hang on an internal failure
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We have source!

http://www.szakmeister.net/misc/unit-testing.zip
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Questions!
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