Survey of Unit-Testing
Frameworks

by John Szakmeister and Tim Woods

uuuuuuuuuuuuuuuuuu

Our Background

® Using Python for 7 years

® Unit-testing fanatics for 5 years

Agenda

® Why unit test!

® Talk about 3 frameworks:
» unittest
P nose

P pYy.test

Sunday, July 26, 2009

Why bother?

® Confidence!

® Automation

® To make failures more obvious
® Jo prevent regressions

® Aids debugging

Sunday, July 26, 2009

Commonalities

® All the frameworks:
» Follow the xUnit mentality

» Verify via asserts

Sunday, July 26, 2009

unittest

® |n the standard library

® The de-facto standard unit test framework

Sunday, July 26, 2009

Writing some tests...

® Need to subclass TestCase

import unittest

class TestFoo(unittest.TestCase):

Sunday, July 26, 2009

Write some tests...

® The simple way: test methods start with ‘test’

® Use assertions validate your results

Sunday, July 26, 2009

Examples...

def testIsInt(self):
self.assertTrue(foo.1sInt(0))
self.assertFalse(foo.1sInt("not an int"))

def testMakelList(self):
self.assertEquals([1,2,3],
foo.makeList(1l, 2, 3))

def testDivide(self):
self.assertkEquals(0®, foo.divide(0, 1))
self.assertRaises(
/eroDivisionError, foo.divide, 1, 0)

Sunday, July 26, 2009

Test Fixtures

® Useful if test cases need more “infrastructure”
® setUp() is called before each test method

® tearDown() is called after each test method

Sunday, July 26, 2009

Sunday, July 26, 2009

Example...

def setUp(self):
... Any *common* set up required for your
test cases can go here
self.db = create_db_connection()

def tearDown(self):
Clean up the fixture here
self.db.close()

11

Sunday, July 26, 2009

Running the lests...

® Executing all tests within the file is easy

® Add this to the file:

1f __name__ == '__main__":
unittest.main()

® (Collects all test cases, and executes them
using the default console test runner

12

Sunday, July 26, 2009

Example output

® On the command line, run:

:: PYTHONPATH=. python tests_unittest/test_foo.py

Ran 4 tests 1n 0.000s

OK

13

Sunday, July 26, 2009

Collecting All Tests...

® Need a suite to help collect the test cases

® |n each file, do the following:

def suite():
testSuite = unittest.TestSuite()
loader = unittest.TestlLoader()

for testCase 1in [TestFoo, TestFooBar]:
testSuite.addTest(
loader.loadTestsFromTestCase(testCase))
return testSuite

14

(cont)

® Pull all the suites together in the __init__ .py:

import unittest
import test_foo

def collectAll():
allSuite = unittest.TestSuite(test_foo.suite())

If you have others, you can add them by
doing:
allSuite.addTest(test_bar.suite())

return allSuite

Sunday, July 26, 2009

15

Sunday, July 26, 2009

Finally, run all the tests

® Need to launch unittest.main(), but this
time, tell it how to find the full test suite:

#!/usr/bin/env python
import unittest
import tests_unittest

unittest.main(
defaultTest="tests_unittest.collectAll’)

16

Sunday, July 26, 2009

setuptools

® You can launch your tests via setuptools:

from setuptools 1import setup

setup(...,
test_suite = "tests_unittest.collectAll’

)

17

Sunday, July 26, 2009

Pros

® |t’s in the standard library

® Writing the actual tests is easy

18

Cons

® Tedious to collect test suites, especially for a
large code base

» Michael Foord is working on this
(check out the discover package)

® Not as easily extensible as other frameworks

» Others have done it though. See the
testtools project in Launchpad.

Sunday, July 26, 2009

19

Future Improvements

® unittest is vastly improved in Python 2.7
» Test discovery
» Skipping
» Expected Failures
» assertRaises using ‘with’ statement

» New assert methods, and much more

Sunday, July 26, 2009

Sunday, July 26, 2009

NOSC

® Written by Jason Pellerin

21

Install nose

® Available from http://

somethingaboutorange.com/mrl/projects/
nose/

® Use easy install:

easy_install nose

Sunday, July 26, 2009

http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/

Sunday, July 26, 2009

Just write tests

® Finds test files, functions, classes, methods
» test or Test on a word boundary
» Customize with regular expression

® No need to write suites

® Use package structure to organize tests

» Add __ init___.py to directory

23

Sunday, July 26, 2009

Write a test

® Create afile, test_foo.py:

from nose.tools import *
import foo

def test_isInt():
assert_true(foo.1sInt(0))

24

Sunday, July 26, 2009

Use assertions

® Provided in ‘nose.tools’
® Same asserts as unittest, in PEP 8 style
® Also provides:

» ok => assert

» eq_ => assert_equals

25

Sunday, July 26, 2009

Use assertions

def test_isInt():
assert_true(foo.isInt(0))
assert_false(foo.1sInt("not an i1nt"))

def test_makelList():
assert_equals([1,2,3], foo.makelList(l, 2, 3))

def test_divide():
eq_(0, foo.divide(@, 1))

26

Sunday, July 26, 2009

Check exceptions

® Verify that test function raises exception

® Use raises decorator:

@raises(ZeroDivisionError)
def test_divide_by_zero():
foo.divide(l, 0)

27

Sunday, July 26, 2009

Test fixtures

Use with_setup decorator
Can be used for simple setup

More complex cases should probably use a
test class

Fixtures per package, module, class

28

Sunday, July 26, 2009

Test fixtures

_db = None

def setup_func():
global _db

_db = create_db_connection()

def teardown_func():
global _db
_db.close()

@with_setup(setup_func, teardown_func)
def test_with_fixture():
ok_(1sinstance(_db, DummyConnection))

29

Test classes

® Define class that matches test regexp
® Define test methods in the class

® Optionally define setup and teardown

Sunday, July 26, 2009

Test classes

class TestFoo():
def setup(self):
Fixture setup
self.db = create_db_connection()

def teardown(self):
Fixture teardown
self.db.close()

def test_isInt(self):
ok_(fo00.1sInt(0))

def test_dbConn(self):
ok_(1sinstance(self.db, DummyConnection))

Sunday, July 26, 2009

31

Sunday, July 26, 2009

(Generative tests

® FEach yield results in a test case

def test_generator():
for 1 1n xrange(0, 20, 2):
yield check_even, 1

def check_even(even_number):
assert_true(foo.1skEven(even_number))
assert_false(foo.1sEven(even_number + 1))

32

Sunday, July 26, 2009

Attributes

® Add attribute tag to tests

from nose.plugins.attrib import attr

@attr('nothing')
def test_zero_equals_zero():
assert 0 ==

® Can set a specific value

@attr(speed=°‘slow’)

33

Sunday, July 26, 2009

Attributes

® Select attributes at runtime (-a/--attr)
» nothing
» speed=slow

® Python expression (-A/--eval-attr)

» “not nothing”

» “(speed=='slow’ and not nothing)”

34

Sunday, July 26, 2009

Skip tests

® Raise exception to report test skipped

from nose.plugins.skip import SkipTest

def test_skipme():
raise SkipTest

35

Runs unittest tests

® | oads tests from unittest. TestCase subclasses

® Easily used as a front-end for legacy tests

Sunday, July 26, 2009

Running tests

® Jype nosetests at the top level

® Run a subset of tests

P cd package; nosetests
P nosetests package/tests/module.py

P nosetests package.tests.module:name

Sunday, July 26, 2009

37

Other features

® setuptools integration
® Plugin system
» Debug, code coverage and profiling

» Doctest runner

» XUnit XML output

Sunday, July 26, 2009

Sunday, July 26, 2009

Pros

No tedious mucking about with suites
Can be used with legacy unittest tests
Generative tests

Plugins

39

Cons

® Not in standard library
® No official release supporting Python 3.x

» py3k branch exists

Sunday, July 26, 2009

py.test

® Written by Holger Krekel

uuuuuuuuuuuuuuuuuu

Install py.test

® Actually part of pylib

® Download from http://pytest.org/

® Use easy install:
easy_1install py

Sunday, July 26, 2009

http://pytest.org
http://pytest.org

Sunday, July 26, 2009

Easy to get started..

® Just create a test file

’

» Make sure it starts with ‘test

® Start adding test methods, or test classes:

import foo
import py.test

def test_isInt():
pASS

43

Sunday, July 26, 2009

Uses ‘assert’

def test_isInt():
assert True == foo.1sInt(0)
assert False == foo.1sInt("not an 1nt")

def test_makelList():
assert [1,2,3] == foo.makelList(1l, 2, 3)

44

Sunday, July 26, 2009

Checking exceptions...

® Use py.test.raises()

def test_divide():
assert @ == foo.divide(0, 1)

Dividing 1 by 0 should raise
/ZeroDivisionError
py.test.raises(
/eroDivisionkError, foo.divide, 1, 0)

45

Sunday, July 26, 2009

“Test’’ classes

Just start the class with “Test”:

class TestFoo():
def test_isInt(self):
assert True == foo.1sInt(0)
assert False == foo.i1sInt("not an int")

46

Sunday, July 26, 2009

Test Fixtures

® VWith test classes, use:

def setup_method(self, method):
Fixture setup
self.db = create_db_connection()

def teardown_method(self, method):
Fixture teardown
self.db.close()

47

Sunday, July 26, 2009

Funcargs

® Helps you to create arguments instead

def pytest_funcarg__db(request):
db = create_db_connection()
request.addfinalizer(lambda: db.close())
return db

def test_db(db):
... do something ..
assert 1sinstance(db, DummyConnection)

® Funcargs are the preferred way in py.test

48

Sunday, July 26, 2009

Funcargs

® Helps you to create arguments instead

def pytest_funcarg_request):
db = create_db_connection()
request.addfinalizer(lambda: db.close())
return db

def test db‘

. do something .
assert 151nstance(db DummyConnection)

® Funcargs are the preferred way in py.test

49

Sunday, July 26, 2009

(Generative tests...

® Similar to nose...

def test_generative():
for 1 1n xrange(0,20,2):
yield check_even, 1

def check_even(even_number):

assert True == foo.1sEven(even_number)
assert False == foo.1isEven(even_number+1l)

® This has been deprecated though

50

Sunday, July 26, 2009

(Generative tests...

® New style test generators
» Still experimental
» Encompasses several ways of doing:
* Parameterized tests

e Scenario tests

51

Sunday, July 26, 2009

“Marking” tests...

® Can mark tests as “expected failure”

@py.test.mark.xfail
def test_xfail():
assert 0 == 1

® Or with keywords

A test marked with keyword "nothing"
@py.test.mark(nothing=True)
def test_zero_equals_zero():

assert @ ==

52

Sunday, July 26, 2009

“Marking” tests...

® Some keywords are added automatically
» Filename
» Class names

» Function names

53

Sunday, July 26, 2009

Skipping Tests

® Skip if an import fails
bogus = py.test.importorskip("bogus™)

» Skip all when done at module level

» Skips an individual test when done inside
a test function

® Skip for some other reason
py.test.skip("A short message")

54

Sunday, July 26, 2009

Disabling a test class

® Great for disabling platform-specific tests:

class TestWin320nly:
disabled = sys.platform != "win32'
Test cases follow..

® Also good for disabling tests that require a
specific software/hardware setup

» Need a decent way to test for it

» Keywords are useful for this too

55

Sunday, July 26, 2009

Executing lTests

® Use the py.test command:

py.test [/path/to/file/or/dir] [..]

® Automatically collects tests

® Begins executing tests immediately

56

Sunday, July 26, 2009

Executing lTests

® Tests with a specific keyword:

py.test -k keyword

® Tests that don’t have a specific keyword:

py.test -k “-keyword”

57

Distributed lesting

® [wo modes
» Local

» Remote

uuuuuuuuuuuuuuuuuu

Sunday, July 26, 2009

Locally

® Take advantage of multiprocessors machine
® Significant speedups if tests are |O bound

® TJo run tests in ‘<num>’ processes, use:

py.test -n <num>

59

Sunday, July 26, 2009

Remotely

® [wo strategies

» Load balancing - every test one run once
py.test --dist=load

py.test -d

» Multiplatform - run every test on each
platform
py.test --dist=each

60

Sunday, July 26, 2009

Remote Mechanisms

® Use ssh

py.test -d --tx ssh=user@host//chdir=/tmp \
--rsyncdir pkg

® Use a gateway

py.test -d --tx socket=ip:port//chdir=/tmp \
--rsyncdir pkg

® Gateway launched via a small script

» Does not require installing pylib

61

Sunday, July 26, 2009

conftest.py

® Captures command-line args in a config file

® Great for storing remote test configuration

pytest_option_tx = ["ssh=localhost"]
pytest_option_dist="1oad"

Paths are relative to conftest.py
rsyncdirs = [".", "../foo.py"]

® Can also configure plugin options

62

Other features

® Can drop into PDB on error

® Has a plugin system
» Execute unittest-style TestCases
» Coverage reporting (via figleaf)
» Pylint integration

» And many more

Sunday, July 26, 2009

Sunday, July 26, 2009

Pros

Don’t need to collect the tests
Generative tests

Marking tests

Distributed testing

Excels with large test suites

More to py.test than this small example

64

Cons

® Default output is a bit sloppy
® Funcargs and generative == breakage!
® No Python 3 support yet

® Distributed tests can hang on an internal failure

Sunday, July 26, 2009

65

Sunday, July 26, 2009

We have source!

http://www.szakmeister.net/misc/unit-testing.zip

66

http://www.szakmeister.net/misc/unit-testing.zip
http://www.szakmeister.net/misc/unit-testing.zip

Questions!

uuuuuuuuuuuuuuuuuu

