
Life after Make

Build systems suck!

• They’re fragile

• They’re complicated

• Only one person understands it

• ...but he’s not here

• On top of that...

Make has a few issues...

• Tabs and spaces?!

Make has a few issues...

• Tabs and spaces?!

• Even Python doesn’t recommend
that

Make has a few issues...

• Tabs and spaces?!

• Even Python doesn’t recommend
that

• All work is done by external tools!

Make has a few issues...

• Tabs and spaces?!

• Even Python doesn’t recommend
that

• All work is done by external tools!

• Hope you have good documentation

Make has a few issues...

• Tabs and spaces?!

• Even Python doesn’t recommend
that

• All work is done by external tools!

• Hope you have good documentation

• Dependency tracking is full-manual

Make has a few issues...

• Tabs and spaces?!

• Even Python doesn’t recommend
that

• All work is done by external tools!

• Hope you have good documentation

• Dependency tracking is full-manual

• Not cross-platform

Make has a few issues...

Cygwin is not a solution

Enter SCons

SCons

• Written entirely in Python

SCons

• Written entirely in Python

• “Makefiles” are Python scripts

SCons

• Written entirely in Python

• “Makefiles” are Python scripts

• Does dependency tracking for you!

SCons

• You still describe the steps to build
your project

SConstruct (SCons Makefile equivalent)

env = Environment()

env.Program(target = 'helloworld', source = ['main.c'])

SConstruct (SCons Makefile equivalent)
releaseEnv = Environment(BUILDNAME = 'release')

debugEnv = Environment(BUILDNAME = 'debug')
debugEnv.Append(CFLAGS = ['-g'])

for env in [debugEnv, releaseEnv]:
 Export('env')
 env.SConscript('src/SConscript',
 variant_dir = 'build/$BUILDNAME')

src/SConscript
Import('env')

env.Program(target = 'helloworld', source = ['main.c'])

• Supports build variants

• Each environment can be configured
differently

• Debug

• Release

• Test

• Host vs. Target

• You can also add your own builders...

SConstruct (SCons Makefile equivalent)

env = Environment()

My custom builder
def build_foo(target, source, env):
 # ... Some tedious process to build whatever
 return 0 # Successfully built target

env.Append(BUILDERS = {'Foo': build_foo})

env.Foo(target = 'bar', source = ['main.foo'])

• ..that’s really nice for reducing your
reliance on external tools

Helper Methods

• Extraordinarily powerful!

Helper Methods

• Extraordinarily powerful!

• Makes it easy to introduce additional
build steps

Helper Methods

• Extraordinarily powerful!

• Makes it easy to introduce additional
build steps

• Stripping release builds

Helper Methods

• Extraordinarily powerful!

• Makes it easy to introduce additional
build steps

• Stripping release builds

• Munging data

Helper Methods

• Extraordinarily powerful!

• Makes it easy to introduce additional
build steps

• Stripping release builds

• Munging data

• Reduces redundancy

Helper Methods

SConstruct (SCons Makefile equivalent)

env = Environment()

You can group a series of steps into a helper
def export(env, source):
 env.Install("#export/bin", source)
 env.Install("#export/local/bin", source)

env.AddMethod(export, "ExportBin")

prog = env.Program(target = 'helloworld', source = ['main.c'])

env.ExportBin(prog)

• These features have allowed us to:

• These features have allowed us to:

• Incorporate coverage testing

• These features have allowed us to:

• Incorporate coverage testing

• Support building apps in both the
host and target environments
(cross-compiling)

• These features have allowed us to:

• Incorporate coverage testing

• Support building apps in both the
host and target environments
(cross-compiling)

• Simplify our build scripts

• These features have allowed us to:

• Incorporate coverage testing

• Support building apps in both the
host and target environments
(cross-compiling)

• Simplify our build scripts

• Make it super easy to add to our
build process

SCons is not without fault...

• The code base is over-engineered

SCons is not without fault...

• The code base is over-engineered

• Despite the plethora of
documentation, it could use more

SCons is not without fault...

• The code base is over-engineered

• Despite the plethora of
documentation, it could use more

• Targets are built according to
dependency, not the order listed

SCons is not without fault...

Where to find it...

• http://scons.org/

• Latest version is 1.2.0

• User’s Guide and Man page on the site

http://scons.org
http://scons.org

