





e They’re fragile
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Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!
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Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!
e Hope you have good documentation

e Dependency tracking is full-manual

e Not cross-platform



Cygwin is not a solution



















e You still describe the steps to build
your project

# SConstruct (SCons Makefile equivalent)

env = Environment()

env.Program(target = "helloworld', source = ['main.c'])




e Supports build variants

# SConstruct (SCons Makefile equivalent)
releaseEnv = Environment(BUILDNAME = 'release')

debugEnv = Environment(BUILDNAME = "debug')
debugEnv.Append(CFLAGS = ['-g'])

for env in [debugEnv, releaseEnv]:
Export('env')
env.SConscript('src/SConscript’,
variant_dir = 'build/$BUILDNAME ")

# src/SConscript
Import('env')

env.Program(target = "helloworld', source = ['main.c'])
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e YOu can also add your own builders...

# SConstruct (SCons Makefile equivalent)

env = Environment()

# My custom builder
def build_foo(target, source, env):

# ... Some tedious process to build whatever
return @ # Successfully built target

env.Append(BUILDERS = {'Foo': build_foo})

env.Foo(target = 'bar', source = ['main.foo'])
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Helper Methods

e Extraordinarily powerful!

e Makes it easy to introduce additional
build steps

o Stripping release builds
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Helper Methods

e Extraordinarily powerful!

e Makes it easy to introduce additional
build steps

o Stripping release builds
e Munging data

e Reduces redundancy



# SConstruct (SCons Makefile equivalent)

env = Environment()

# You can group a series of steps into a helper

def export(env, source):
env.Install("#export/bin", source)
env.Install("#export/local/bin", source)

env.AddMethod(export, "ExportBin™)

prog = env.Program(target = 'helloworld', source = ['main.c'])

env.ExportBin(prog)
















e These features have allowed us to:
e Incorporate coverage testing

e Support building apps in both the
host and target environments

(cross-compiling)

e Simplify our build scripts



e These features have allowed us to:
e Incorporate coverage testing

e Support building apps in both the
host and target environments

(cross-compiling)
e Simplify our build scripts

e Make it super easy to add to our
build process
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SCons is not without fault...

e The code base is over-engineered

e Despite the plethora of
documentation, it could use more

e Targets are built according to
dependency, not the order listed



the site



http://scons.org
http://scons.org

