

e They’re fragile

Rt A+ 83 Al
) s ar

23 AMNAY. 2% WWED S .‘p_ Ve, G P

: N) 1R .
"-'-‘l'.‘:?n"“l's\\'l-h‘- | Zoeintd N g 7 : i
= At 1l ‘
N Y = R “' "S t » R4 ‘)
PRYAN sl @ LI\ DAt o i
A S, 0 1 B Sy B9 .
ARSI RS et TR it :
= A STk il s ATl e S
R Y B Dy R AL LA Ll T e w :;_;,E“
! - i
5) 1wit3
N, 3.._-;---
ST - " I .!.li!
- S - IR rw A -- 2 T
Rl -:' 0.-.. l-'::.':'—";‘ . ..? '-'.
"%
&
e

N\ AN el Py ——
RIS <

ERU R SR WA
- - e

i

(‘
i,

e

e {4

LIEPOR B LT 5

EERL S 38 Y

R
LS MALL AT A

T T

B A n p».na.\v\au..

o
L™ o

» ﬂ.ﬂ.—
Vce)

={

ol
7

(&
o

Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!

Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!

e Hope you have good documentation

Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!

e Hope you have good documentation

e Dependency tracking is full-manual

Make has a few issues...

e Tabs and spaces?!

e Even Python doesn’t recommend
that

e All work is done by external tools!
e Hope you have good documentation

e Dependency tracking is full-manual

e Not cross-platform

Cygwin is not a solution

e You still describe the steps to build
your project

SConstruct (SCons Makefile equivalent)

env = Environment()

env.Program(target = "helloworld', source = ['main.c'])

e Supports build variants

SConstruct (SCons Makefile equivalent)
releaseEnv = Environment(BUILDNAME = 'release')

debugEnv = Environment(BUILDNAME = "debug')
debugEnv.Append(CFLAGS = ['-g'])

for env in [debugEnv, releaseEnv]:
Export('env')
env.SConscript('src/SConscript’,
variant_dir = 'build/$BUILDNAME ")

src/SConscript
Import('env')

env.Program(target = "helloworld', source = ['main.c'])

.
T
Y

a0,

e YOu can also add your own builders...

SConstruct (SCons Makefile equivalent)

env = Environment()

My custom builder
def build_foo(target, source, env):

... Some tedious process to build whatever
return @ # Successfully built target

env.Append(BUILDERS = {'Foo': build_foo})

env.Foo(target = 'bar', source = ['main.foo'])

3)

o

et
i

L

Helper Methods

e Extraordinarily powerful!

e Makes it easy to introduce additional
build steps

o Stripping release builds

Helper Methods

e Extraordinarily powerful!

e Makes it easy to introduce additional
build steps

o Stripping release builds

e Munging data

Helper Methods

e Extraordinarily powerful!

e Makes it easy to introduce additional
build steps

o Stripping release builds
e Munging data

e Reduces redundancy

SConstruct (SCons Makefile equivalent)

env = Environment()

You can group a series of steps into a helper

def export(env, source):
env.Install("#export/bin", source)
env.Install("#export/local/bin", source)

env.AddMethod(export, "ExportBin™)

prog = env.Program(target = 'helloworld', source = ['main.c'])

env.ExportBin(prog)

e These features have allowed us to:
e Incorporate coverage testing

e Support building apps in both the
host and target environments

(cross-compiling)

e Simplify our build scripts

e These features have allowed us to:
e Incorporate coverage testing

e Support building apps in both the
host and target environments

(cross-compiling)
e Simplify our build scripts

e Make it super easy to add to our
build process

.
T
Y

a0,

SCons is not without fault...

e The code base is over-engineered

e Despite the plethora of
documentation, it could use more

e Targets are built according to
dependency, not the order listed

the site

http://scons.org
http://scons.org

